Immersions of Surfaces in Almost–complex 4–manifolds

نویسنده

  • CHRISTIAN BOHR
چکیده

In this note, we investigate the relation between double points and complex points of immersed surfaces in almost–complex 4–manifolds and show how estimates for the minimal genus of embedded surfaces lead to inequalities between the number of double points and the number of complex points of an immersion. We also provide a generalization of a classical genus estimate due to V.A. Rokhlin to the case of immersed surfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple point of self-transverse immesions of certain manifolds

In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...

متن کامل

On isometric Lagrangian immersions

This article uses Cartan-Kähler theory to show that a small neighborhood of a point in any surface with a Riemannian metric possesses an isometric Lagrangian immersion into the complex plane (or by the same argument, into any Kähler surface). In fact, such immersions depend on two functions of a single variable. On the other hand, explicit examples are given of Riemannian three-manifolds which ...

متن کامل

Surfaces in 4-manifolds and the Surgery Conjecture

We give a survey of geometric approaches to the topological 4-dimensional surgery and 5-dimensional s-cobordism conjectures, with a focus on the study of surfaces in 4-manifolds. The geometric lemma underlying these conjectures is a statement about smooth immersions of disks and of certain 2-complexes, capped gropes, in a 4-manifold. We also mention a reformulation in terms of the A − B slice p...

متن کامل

On Singly-periodic Minimal Surfaces with Planar Ends

The spaces of nondegenerate properly embedded minimal surfaces in quotients of R3 by nontrivial translations or by screw motions with nontrivial rotational part, fixed finite topology and planar type ends, are endowed with natural structures of finite dimensional real analytic manifolds. This nondegeneracy is defined in terms of Jacobi functions. Riemann’s minimal examples are characterized as ...

متن کامل

Immersions of Surfaces into Aspherical 3-manifolds

We study finite order invariants of null-homotopic immersions of a closed orientable surface into an aspherical orientable 3-manifold. We give the foundational constructions, and classify all order one invariants.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000